
Measured Performance of Caching in the
Sprite Network File System

Brent B. Welch

3
Xerox PARC

333 Coyote Hill Road

w

Palo Alto CA 94304

elch@parc.xerox.com

T

Abstract
his paper reports on the effectiveness of the caching strategy used in the Sprite network file

.
M
system based on data taken over several weeks of day-to-day usage by a variety of users

easurements include cache consistency activity, long term I/O traffic rates, long term cache

t
hit rates, and the averages and variations in the size of the variable-sized caches. Network
raffic is compared with traffic to the local cache, and the effects of paging traffic are con-

o
sidered. The overall conclusion is that the caching system is quite effective and poses a low
verhead. Using a delayed write strategy, 40% to 50% of the data written to client caches is

i
never written through to a server, and less than 1% of the open operations by clients resulted
n cache consistency actions by a server. †

1

July 19, 1991

. Introduction

This paper presents performance measurements of the caching subsystem of the Sprite

d
distributed file system [Ousterhout88]. In a Sprite network, client workstations are usually
iskless, and the file servers implement different parts of a uniformly shared file system that

c
provides the semantics of a 4.3 BSD UNIX timesharing system. Both clients and servers
ache file data in their main memories to optimize I/O operations[Nelson88b]. Cache con-

fi
sistency is provided so that a read returns the most recently written data regardless of the way

les are shared. A delayed write policy is used on the clients and servers, and it provides two
hhhhhhhhhhhhhhhhhhhhhhhhhhhhh

† This paper will appear in Computing Systems, the Journal of the USENIX Association.

-
p
Part of this work was done while the author was at the University of California, Berkeley, and was sup
orted in part by the Defense Advanced Research Projects Agency under contract N00039-85-C-0269,

C
in part by the National Science Foundation under grant ECS-8351961, and in part by General Motors

orporation.

benefits. First, applications do not have to wait for the relatively slow network and disk opera-
-

t
tions because writes occur in the background. Second, the delay period means that data writ
en by applications can be deleted or overwritten without being written through to the file

servers.

The main results presented in this paper are summarized in Table 1 and Table 2. They

o
were obtained by monitoring the Sprite network for a period of several months. Less than 1%
f the files opened triggered server consistency actions, which indicates that the consistency

-
c
scheme imposes low overhead. Concurrent read sharing is quite common, mainly due to exe
utable files. The variable-sized caches adapt to the different needs of clients and servers, with

t
c
servers using more memory for their file cache than clients. The read miss rate for clien
aches is good, but the low client write traffic ratio is even more significant. 40% to 50% of

o
the data written by applications is never written through to the file servers. This data is deleted
r overwritten within the 30-second delay period.

These results are based on statistics taken from our Sprite network from July through
eDecember, 1989, and a follow up study made in March and April 1991. At the time of th

iii
i Summary of Caching Measurements (Fall ’89)iii

F
Files requiring consistency callbacks < 1% opens

iles uncachable due to sharing 7.5% opens
iFiles concurrently read shared 37% opensii

A
Average client cache sizes 17%-35% memory

verage server cache sizes 25%-61% memoryiii
Average client read miss ratios 35% bytes

siAverage client write traffic ratios 52% byteiicc
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c

t
p
Table 1. Summary of results from the initial study made during the fall of 1989. The firs
art of the table contains cache consistency related figures based on open operations. The

s
fi
second part contains gives average cache sizes. The third part gives cache effectivenes

gures based on I/O rates.

iii
i Summary of Caching Measurements (March-April ’91)iii

F
Files requiring consistency callbacks < 1% opens

iles uncachable due to sharing < 1% opens
siFiles concurrently read shared 51% openii

A
Average client cache sizes 7%-33% memory

verage server cache sizes 40%-73% memoryiii
Average client read miss ratios 39% bytes

siAverage client write traffic ratios 62% byteiicc
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c

t
d
Table 2. Summary of results from a follow-up study made in the Spring of 1991. The mos
ramatic change is the reduction in the number of uncachable files due to the replacement of

a network-wide shared database file with a server-based implementation.

Sprite Caching

original study, the Sprite network was composed of four file servers (one Sun-4/280, 2 Sun-3s,

t
and 1 DECstation 3100) and about 30 client workstations (11 Sun-3s, 4 Sun-4s, and 15 DECs-
ation 3100s). One year later the network had around 36 clients (6 Sun-3s, 13 Sun-4s, and 17

r
e
DECstation 3100s), the two Sun-3 servers were retired and another Sun-4 server was added fo
xperiments. Table 3 lists the characteristics of the file servers measured in the study.

t
w

The results were obtained from raw data in the form of about 450 different statistics tha
ere maintained in the kernel and periodically sampled. File servers were sampled hourly, and

s
w
clients were sampled 5 times each day (at 8am, 11am, 2pm, 5pm, and 8pm). Some change

ere made to the system after the original study, and a second set of measurements was taken

w
to determine the effects of the changes on the system’s behavior. (A 6th sample taken at 11pm

as also added during the second study period.)

Sprite is 4.3 BSD UNIX compatible, although the operating system kernel has been
g

n
implemented from scratch. During the study, Sprite was used for all the day-to-day computin
eeds of twenty or more graduate students, a few professors, and a couple of staff members.

t
There were about a dozen more occasional users.. The workload consisted of large compila-
ion jobs, word processing, electronic mail, simulation studies, and other assorted programming

.
E
tasks. Perhaps the heaviest load on the system stemmed from development of Sprite itself

specially during the initial study, Sprite was undergoing considerable tuning, performance
-

p
enhancements, and bug fixes. Process migration was used extensively to distribute large com
ilation jobs among idle workstations. With migration, recompiling a large module of the ker-

nel (e.g., the VM system or the file system) was fast enough that it was done rather frequently.

The remainder of this paper is organized as follows. Section 2 reviews the Sprite cach-

r
ing system and the algorithm used to maintain consistency of client caches. Section 3 presents
esults on the cache consistency overhead. Section 4 presents measurements of the

v
effectiveness of the caching system during normal system activity. Section 5 shows how
ariable-sized caches dynamically adapt to clients and servers of different memory sizes. Sec-

tion 6 describes related work. Section 7 concludes the paper.

ii
i File Server Profilesiii
iName CPU Memory Filesiii

O
Mint Sun-3 16 Meg Root, commands, libraries

regano Sun-3 16 Meg /tmp, commands, sources, users
s

A
Allspice Sun-4 128 Meg Root, commands, swap, sources, user

ssault DS3100 24 Meg Users
liAnise Sun-4 32 Meg Expermentaiiic

c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c

-
t
Table 3. A profile of the file servers measured in the two studies. The memory size is the to
al physical memory, not the cache size. Mint was the root server in the first study. By the

r
m
time of the second study, Mint and Oregano had been retired and Allspice was the server fo

ost files. Assault continued to service a few user directories, and Anise was used for exper-
ments and scratch space.

- 2 -

2

Sprite Caching

. The Sprite Caching System

This section reviews the Sprite caching system originally described in [Nelson88b]. The
e

t
important properties of Sprite’s caching system are: 1) diskless clients of the file system us
heir main memories to cache data; 2) clients use a delayed-writing policy so that temporary

s
g
data does not have to be written to the server; and 3) the servers guarantee that clients alway
et data that is consistent with activity by other clients, regardless of how files are being shared

,
a
throughout the network. Servers also cache data in their main memory and use delayed writes
nd the implementation of the client and server caches is basically the same.

n
a

The key characteristics of the Sprite consistency scheme are: 1) the server sees all ope
nd close operations by clients; 2) a version number is associated with each file and incre-

c
mented when a file is opened for writing; and 3) a file is not cachable on clients when it is
oncurrently open for writing on one client and for reading and/or writing on another client.

w
The last point is a key simplification in the Sprite caching system: if a file is concurrently

rite-shared by different clients, I/O operations on that file bypass the client caches and are
serialized in the server cache.

In order to provide a consistent view of file data, the file servers track open and close
e

c
operations and keep state about how their files are being cached by clients. Servers issu
ache control messages to clients at open time, if needed, so that clients always get the most

o
up-to-date file system data. A file server issues a write-back command to client-A if client-B
pens a file and client-A has the most recent version of the file still dirty in its cache. Because

b
clients use a delayed write policy, this can occur if a file is generated on one client and used
y another within the 30-second aging period. A file server issues a disable caching command

f
a
to client-A if client-B opens a file for writing and client-A still has the file open. The result o
n open operation indicates to the opening client whether or not it can cache the file. In addi-

c
tion, servers increment a per-file version number each time the file is opened for writing, and
lients use the version number to detect stale data in their cache.

,
a

The caching scheme is based on the assumption that concurrent write-sharing is rare
lthough there was one heavily shared file in our network. A host load database was main-

-
b
tained using a shared file for the database. A daemon process on each host updated the data
ase once a minute with the host’s weighted load average and the time since last keyboard

s
m
input. The database was consulted in order to choose idle hosts for the targets of proces

igration. Because the database was continuously open for writing by a daemon process on
e

f
every client, it was in an uncachable state. This was done by design to prevent the databas
rom moving among client caches in response to updates and queries. The effects of this data-

base will be described in Sections 3 and 4.

The use of delayed writes reflects a tradeoff between reliability and performance. Sprite
e

r
has a recovery system that recovers from server and client failures [Welch89]. A cooperativ
ecovery protocol is used after a server reboots in which clients help the server rebuild its state

-
t
about files cached on the clients. Under normal circumstances, processes on clients can con
inue to use open files after the recovery protocol completes. Network partitions can lead to

e
c
diabolical conflict cases, but these are detected by the recovery protocol. With delayed writ
aching, however, a power failure on a client can result in the loss of recently generated data.

p
This is no worse than a timeshared UNIX system because UNIX also uses a 30-second delay
eriod before writing data to the local disk. To guard against this, our editors and source code

a
l
control programs use a system call to force files through to the server’s disk. There is still
arge amount of temporary data that is deleted before being written back to the server, as

- 3 -

s

Sprite Caching

hown in Section 4.

3. Sharing and Consistency Overhead Measurements

e
s

The amount of file sharing and the consistency-related traffic was measured on the fil
ervers by instrumenting the procedure that checks cache consistency and issues callbacks to

d
t
clients. The results from the initial 36-day study are given in Table 4. The table is organize
o show both hourly rates and per-server rates. The tables are broken down into different time

e
p
periods based on the time data was collected, where each row indicates the activity over th
receding interval (e.g. 8pm to 8am, 8am to 11am, and so on). The per-server and combined

t
n
rows shows the results averaged over the whole study period. The large number of opens a
ight result from the nightly dumps. The various cases in the table are explained below. Note

-
u
that the measurements in this section are in terms of files opened, not bytes transferred. Meas
rements presented in the next section indicate how much I/O traffic there is to uncachable

N

files and what the cache hit ratios are.

on-File
This value indicates the number of directories, symbolic links, and swap files that were

p
opened. These files are not cached on the clients. Swap files are not cached so that VM
ages really leave the machine upon page-out. Directories and links are not cached on

C

clients because servers do all pathname evaluation [Welch86].

an’t Cache
This value indicates the percentage of files opened that could have been cached on

iii
File Sharing and Cache Consistency Actions (Nov-Dec ’89) ii

Hour or Num Non- Can’t Read Last Server Action
ei Server Opens File Cache Sharing Writer Write-back Invalidatii

1
8 6,932,578 35% 7.18% 39% 12% 0.34% 0.14%
1 1,252,039 20% 8.71% 34% 9% 0.19% 0.13%

%
1
14 1,800,274 17% 7.86% 40% 10% 0.35% 0.22
7 2,857,620 19% 7.45% 34% 10% 0.42% 0.31%

%i20 1,940,819 17% 7.85% 30% 13% 0.26% 0.20iii

A
Mint 6,976,180 10% 14.69% 44% 12% 0.17% 0.07%

llspice 4,784,280 46% 0.04% 27% 12% 0.58% 0.01%
%

A
Oregano 1,746,430 38% 0.98% 67% 9% 0.03% 0.89

ssault 486,320 34% 0.33% 17% 3% 1.52% 0.08% ii
Combined 13,993,210 27% 7.47% 37% 11% 0.34% 0.15% i

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
cciic

c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

e
o
Table 4. Cache consistency statistics including the number of files opened, read sharing, reus
f dirty files, and cache consistency actions. The top-half of the table gives an hourly break-

t
down of all the servers combined. Each row summarizes the activity in the interval before
he time listed in the first column. The bottom half gives the total breakdown for each server

-
t
individually. The last row has the totals for all the servers combined, which represents the to
al file system traffic. The data was taken over a 36-day period in the fall of 1989.

- 4 -

Sprite Caching

clients but were not cachable because of concurrent write sharing. The large amount of
r

s
sharing measured on Mint, 15%, is due to the shared host load database. The othe
ervers see very few concurrently write shared files.

Read Sharing
This value counts the number of files that were open for reading by more than one pro-

t
b
cess at a time, either on the same or different clients. This case is relatively frequen
ecause of shared executable files; it happens in about 37% of the cases. It is more fre-

quent on Mint and Oregano, the servers for the commands directories.

rLast Write
This value counts the files that were written to a client’s cache and then re-read or re-

s
written by the same client before the 30-second delayed write period expired. File
ervers do not issue write-back commands in this case. Each of the servers, except

q
Assault, sees a significant amount of this case, about 11% overall. This percentage is
uite close to the percentage of files open for writing and suggests that most data is re-

w
read or re-written shortly after it is generated. (During this period, 85.2% of all opens

ere read-only, 9.3% of all opens were write-only, and 5.5% of all opens were for read-

t
write access. See [Welch90] Appendix B, Table B-3.) Mint, for example, has log files
hat can be repeatedly updated by the same client. Oregano serves ‘‘/tmp’’, and com-

s
piler and editor temporaries account for the reuse of dirty files. Allspice has the system
ource directories, and compiler output usually gets re-read by the linker. Assault is too

S

lightly loaded to experience much of this behavior.

erver Action
This value indicates how often the servers had to issue cache control messages.

s
‘‘Write-back’’ indicates how many times the last writer of a file was told to write its ver-
ion back to the file server. ‘‘Invalidate’’ indicates how many clients had to stop cach-

t
w
ing a file they were actively using because it became concurrently write-shared after i

as opened. Write-backs happen in less than 1% of the cases, which indicates that

t
sequential write-sharing (within the delay period) between clients is rather rare. Invalida-
ions are also rare, except on Oregano as described below. These measurements are con-

w
sistent with trace data studied by Thompson [Thompson87] who found relatively little

rite sharing among different users.

Two anomalies stand out in Table 4. The first is that almost 15% of the files opened on
-

b
Mint were uncachable files. After some sleuthing, this value was traced to the host load data
ase. While the daemons that periodically update the database keep the file open, some other

process apparently opens the database periodically as part of a query.

The second anomaly in Table 4 is the relatively large number of invalidation commands

t
issued by Oregano. These are due to a temporary file used by pmake, our parallel compilation
ool that uses process migration. Pmake generates a temporary file containing the commands

.
D
to be executed on the remote host. Initially, this file is cached on the host running pmake

uring migration it is open by both the parent (pmake) and the child (a shell that will execute
e

p
the commands on the remote host). These processes share a read-write I/O stream that th
arent used to write the file and the child will use to read it. When the child migrates to the

-
b
remote host the file server detects this as a case of concurrent write sharing and issues a write
ack and invalidate command to the host running pmake. If the parent closed the file before

’
c
the migration this would appear as sequential write sharing and contribute to the ‘‘Write-back’
olumn instead.

- 5 -

Sprite Caching

Since the first study was made, the function of the load average database was reimple-
t

r
mented by an active server process, or pseudo-device. A pseudo-device is a special file tha
epresents a server process; all file operations on the pseudo-device are forwarded to the server

,
p
process by the kernel [Welch88]. The server can make more intelligent choices for migration
lus its interface is more efficient [Douglis90]. Previously a process had to fetch the whole

s
u
database over the network in order to select a host for migration (recall that the database wa
ncachable). With a centralized server making host selections, host selection only requires a

s
t
single query. Furthermore, the server selects the same idle hosts again and again, and thi
ends to increase the effectiveness of those clients’ file caches. Table 5 shows consistency

.
T
related statistics after this change. There is still a small rate of opens to uncachable files

hese are from other shared databases such as the user login database, and from shared system

4

log files that occasionally get appended to by multiple clients simultaneously.

. Measured Effectiveness of Sprite File Caches

This section presents results on the I/O traffic of the clients and servers, and it shows

c
how effective the caches are during normal system use. Traffic between applications and the
ache is compared with network traffic, a breakdown of the network traffic is given, and the

4

traffic to the servers’ caches is compared with the servers’ traffic to their disks.

.1. Client Read Traffic

This section compares I/O traffic from applications to the cache with network traffic gen-
erated by the clients. The tables present I/O rates in bytes per second, the miss ratio of the

ii
i New File Sharing and Cache Consistency Actions (Mar-Apr ’91)iii

Hour or Num Non- Can’t Read Last Server Action
Server Opens File Cache Sharing Writer Write-back Invalidateii

8 5,071,637 30% 0.13% 44% 1% 0.61% 0.07%
%

1
11 1,256,606 16% 0.26% 54% 3% 0.52% 0.08
4 2,209,775 13% 0.43% 53% 6% 0.68% 0.23%

%
2
17 2,200,846 14% 0.63% 46% 5% 0.74% 0.28
0 1,964,212 11% 0.44% 48% 5% 0.70% 0.25%

%i23 1,937,916 9% 0.33% 54% 3% 0.37% 0.18iii

A
Allspice 11,175,500 13% 0.33% 55% 2% 0.42% 0.17%

nise 896,419 37% 0.02% 4% 9% 1.78% 0.01%
%iAssault 1,004,500 49% 0.14% 35% 9% 1.43% 0.03iii

iCombined 13,076,419 18% 0.30% 51% 3% 0.59% 0.15%iiicc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

h
a
Table 5. Consistency data from Allspice, Assault, and Anise during a 36-day study in Marc
nd April 1991. Allspice is the primary server, while Assault and Anise store user files. The

e
l
top half of the table summarizes the activity for all servers during the interval before the tim
isted in the first column. The bottom half summarizes the activity for each server individual-

ly. The last row has the totals for all the servers combined.

- 6 -

c

Sprite Caching

ache, and a breakdown of the network traffic in terms of cache misses, uncachable data, and
g

s
paging data from the VM system. Regular files on the file server are used for VM backin
tore, but paging traffic on the client bypasses the client’s file system cache so that data is not

c
cached by both the VM system and the file system. There are two percentages associated with
ache misses. The first percentage is the miss ratio, which is computed as follows:

hhhhhhhUM +
U

W

Miss Ratio =
C +

here M is the rate that data is fetched into the cache because of misses, U is the rate that

f
uncachable data is read, and C is the rate that data is read from the cache by applications. The
act that C does not include U is because uncachable traffic bypasses the cache and the rates

s
f
were monitored separately. In the tables below, the I/O rate in the column labeled ‘‘Cache’’ i
or C, not (C+U).

The second percentage associated with cache misses is its contribution to the total net-
work traffic:

Miss Traf f ic =
M + U + V
h Mhhhhhhhhhh

f
n
where V represents paging traffic from the VM system. The tables also give the proportion o

etwork traffic made up by uncachable data and VM data, as well as the total network I/O
rates.

Tables 6 through 8 give the read traffic for the DECstation and Sun-3 clients. The tables

r
are broken down into different time periods based on the time data was collected, where each
ow indicates the activity over the preceding interval (e.g. 8pm to 8am, 8am to 11am, and so

’
c
on). The bottom row shows the results averaged over the whole study period. The ‘‘Cache’
olumn gives the read rate from the cache (not counting reads to uncachable data), and the

ii
DS3100 Client Read Traffic (Bytes/Seconds and ratios) (Nov-Dec ’89)ii
Hr Cache Misses Uncached PageIn Totalii

8 286 21% 52 28% 10 5% 124 66% 188
9

1
11 469 62% 289 65% 10 2% 139 31% 43
4 490 37% 173 40% 16 3% 239 55% 430

8
2
17 897 27% 232 58% 26 6% 138 34% 39
0 988 47% 463 83% 12 2% 81 14% 557ii

TL 570 34% 188 62% 12 4% 100 33% 302i

c
c
c
c
c
c
c
c
c
cciiic

c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c

.
T
Table 6. Hourly read traffic for DECstation 3100 clients, which have 24 Meg main memories

he first column indicates the time of day data was taken, and the other columns have I/O
.

I
rates and relative percentages. The last row averages the data over the whole trace period
/O rates are given in bytes/second. The first percentage in the ‘‘Misses’’ column is the cache

r
s
miss rate. The second percentage is the relative proportion of cache miss traffic to othe
ources of network traffic. The ‘‘Uncached’’ and ‘‘PageIn’’ columns gives rates for traffic to

-
c
uncachable files and traffic to swap files, respectively. The percentages in these columns indi
ate their relative proportion of the total network read traffic. The ‘‘Total’’ column gives the

total network read traffic.

- 7 -

Sprite Caching

iii
iSun-3 (12 Meg) Client Read Traffic (Bytes/Seconds and ratios) (Nov-Dec ’89)iii
i Hr Cache Misses Uncached PageIn Totaliii

1
8 132 21% 23 24% 6 6% 64 68% 94
1 566 22% 104 24% 29 6% 290 68% 425

4
1
14 887 32% 270 46% 30 5% 280 47% 58
7 969 25% 229 56% 20 5% 153 37% 405

8i 20 678 23% 147 51% 14 5% 126 43% 28ii
i TL 434 35% 144 43% 15 4% 167 51% 328iicc
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c

Table 7. Hourly read traffic for Sun-3 clients with 12 Meg main memory.

ii
iSun-3 (8 Meg) Client Read Traffic (Bytes/Seconds and ratios) (Nov-Dec ’89)iii
i Hr Cache Misses Uncached PageIn Totaliii

1
8 145 45% 57 40% 15 10% 68 47% 142
1 205 43% 77 21% 23 6% 249 69% 360

5
1
14 485 40% 179 37% 25 5% 262 55% 47
7 725 41% 283 36% 25 3% 410 52% 778

6i 20 522 42% 215 46% 14 3% 228 49% 46iii
i TL 322 40% 122 37% 14 4% 185 55% 330iiicc
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c

‘

Table 8. Hourly read traffic for Sun-3 clients with 8 Meg main memory.

‘Misses’’ column gives the rate at which the cache requested data from a server. The first

r
percentage under ‘‘Misses’’ is the miss ratio defined above, while the second percentage is the
atio of cache misses to all network read traffic. The other two primary sources of network

’
a
read traffic, uncachable files and page faults, are listed in the columns labeled ‘‘Uncached’
nd ‘‘PageIn’’. The last column gives the total network I/O traffic. Some of the network I/O

t
s
traffic (up to 1% or 2%) is due to remote device and remote window access, which is no
hown in the table.

The overall read miss rates are around 35%, with the 8 Meg Sun-3s slightly worse at a
-

c
40% miss rate. The hourly average miss rates range from about 20% to 60%, with lower per
entages indicating more effective caches. Note that VM paging traffic accounts for slightly

i
more network read traffic than cache misses. The VM traffic includes page faults on program
mage files, as well as faults on swap files. The DECstations, which all have 24 Meg of main

e
l
memory, have the lowest paging traffic. Note that the workstations with larger memories hav
arger read rates to their cache, but all the workstations have about the same overall network

e
c
read traffic. The larger memories reduce paging and allow for larger, more effective fil
aches.

Initial measurements of the read traffic highlighted a number of clients with abnormally
r

m
high traffic to uncachable data. The traffic for these clients is given in Table 9. Their poo

iss rate, almost 60%, was due to an X widget application that displayed the number of hosts
t

u
currently available for migration. Every 15 seconds the entire database was scanned to coun
p the available hosts, and the effect on network traffic was significant. The process migration

asystem has been changed to use a server process to manage host selection instead of using

- 8 -

Sprite Caching

ii
iAbnormal Client Read Traffic (Bytes/Seconds and ratios) (Nov-Dec ’89)iii
i Hr Cache Misses Uncached PageIn Totaliii

1
8 265 62% 55 13% 290 70% 66 15% 414
1 653 48% 164 20% 293 36% 336 42% 797

5
1
14 609 52% 170 23% 306 42% 244 33% 72
7 1625 34% 345 24% 336 24% 705 50% 1391

8i 20 980 49% 332 42% 294 37% 158 20% 78iii
i TL 516 57% 143 22% 358 56% 128 20% 633iiicc
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c

y
h
Table 9. Hourly read traffic for a collection of DS3100 and Sun-3 clients that have abnormall
igh read traffic to uncachable data. The traffic stems from an application that periodically

s

scans a heavily shared (and therefore uncached) database.

hared file. The server can return the number of available hosts with a single, small query.

s
Table 10 shows the read traffic for a collection of DECstation and Sun-4 clients during the
econd study, after this change was made. There is almost no read traffic to uncachable data,

c
and VM paging traffic dominates the network. The increase in page-in traffic was traced to a
hange in the way initialized data pages of executable programs are handled. These pages

s
have to be reloaded each time a program is executed. Previously they were copied into the file
ystem cache at the time they were first faulted into memory so that future executions of the

a
same program would find the initialized data in the local cache. This feature was simplified
way, but because it causes a significant increase in page-in traffic it has since been reintro-

4

duced.

.2. Client Write Traffic

Tables 11 through 13 give the write traffic for the DECstation and Sun3 clients. The for-
mat of the tables is similar to those for read traffic. Hourly breakdowns are given, and remote

iii
iNew Client Read Traffic (Bytes/Seconds and ratios) (Mar-Apr ’91)iii
i Hr Cache Misses Uncached PageIn Totaliii

1
8 115 40% 45 15% 1 0.7% 242 83% 290
1 257 38% 93 6% 9 0.7% 1310 92% 1413

9
1
14 593 40% 235 15% 12 0.8% 1241 83% 148
7 1093 45% 490 24% 15 0.8% 1456 74% 1962

5
2
20 695 41% 282 19% 7 0.5% 1165 80% 145
3 475 42% 198 11% 8 0.5% 1519 88% 1725iii

TL 301 39% 117 14% 4 0.6% 673 84% 794i

c
c
c
c
c
c
c
c
c
c
cciic

c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c

-
b
Table 10. Read traffic for a collection of DECstation and Sun-4 clients after the shared data
ase was replace by a server process. There is almost no read traffic to uncachable data, and

VM paging traffic dominates the network traffic.

- 9 -

Sprite Caching

iii
iDS3100 Client Write Traffic (Bytes/Seconds and ratios) (Nov-Dec ’89)iii
i Hr Cache WriteBack Uncached PageOut Totaliii

1
8 146 48% 63 49% 14 11% 48 38% 127
1 174 41% 69 46% 5 3% 74 49% 150

2
1
14 270 55% 146 65% 5 2% 69 31% 22
7 530 44% 230 73% 6 2% 74 23% 314

0i 20 333 47% 154 80% 5 3% 29 15% 19ii
i TL 244 51% 120 63% 10 5% 57 30% 189iicc
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c

s
t
Table 11. Hourly write traffic for all the DECstation 3100 clients. The format of the table i
he same as Table 6. An uncached database is updated once a minute by each host, and this

,
m
creates a small amount of uncachable I/O traffic. Note that the overall write miss rate is 51%

eaning that half the data written to the cache is not written out.

iii
Sun-3 (12 Meg) Client Write Traffic (Bytes/Seconds and ratios) (Nov-Dec ’89)ii

Hr Cache WriteBack Uncached PageOut Totalii
8 69 52% 30 53% 11 20% 13 23% 57

3
1
11 148 50% 71 49% 7 5% 61 43% 14
4 267 57% 150 54% 8 3% 79 28% 273

1
2
17 327 53% 170 67% 7 3% 70 28% 25
0 239 37% 84 55% 7 4% 56 37% 151iii

TL 148 52% 74 53% 8 6% 45 32% 140i

c
c
c
c
c
c
c
c
c
cciic

c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c

o
t
Table 12. Hourly write traffic for all the 12 Meg Sun-3 clients. The write traffic is similar t
hat of the DECstation clients.

ii
iSun-3 (8 Meg) Client Write Traffic (Bytes/Seconds and ratios) (Nov-Dec ’89)iii
i Hr Cache WriteBack Uncached PageOut Totaliii

1
8 86 53% 38 46% 15 19% 27 33% 83
1 134 61% 77 46% 11 6% 77 46% 167

0
1
14 186 53% 94 49% 11 6% 82 43% 19
7 354 69% 244 67% 9 2% 104 29% 360

6i 20 172 59% 98 41% 9 3% 125 53% 23iii
i TL 154 59% 85 49% 12 7% 73 42% 173iiicc
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c

y
w
Table 13. Hourly write traffic for all the 8 Meg Sun-3 clients. The write miss rate is slightl

orse (higher) in comparison with the DECstation and 12 Meg Sun-3 clients.

e
e
traffic is divided among cache misses, uncachable data, and writes due to page outs. Th
ffectiveness of the cache in trapping short lived data is given by the traffic ratio:

hhhhhhhUW +
U

W

Traf f ic Ratio =
C +

here W is the amount of data written out of the cache to a server, C is the amount of data
written into the cache by applications, and U is the amount of data written to uncachable files.

- 10 -

Sprite Caching

The most notable result in the tables is that the writeback traffic ratio ranges from about

t
40% to 60%, averaging 52% overall. This means that about half the data written by applica-
ions was removed or overwritten in the 30 second aging period. Traffic to uncachable data

b
accounts for only a few percent of the network traffic, although it does increase the miss ratio
y a couple percent. Page out traffic accounts for less than half the network traffic, and it is as

r
t
low as 30% of the traffic from the DECstation 3100s. Table 14 shows more recent data fo
he Sprite network, after the uncachable host load database was replaced with a server. There

.
S
is still evidence of some shared files that are updated steadily, but the I/O rate is much smaller

hared files are still used to record user logins and to log system events. Note that the write
e

I
traffic ratio is 62%, which is worse than the 50% found in the initial study. Note also that th
/O rates to the cache are lower during this study, suggesting that the network was being used

,
a
less intensively. The initial study was made during an intense period of system development
nd large compilation jobs generated much of the I/O traffic. Compiler temporary files are

c
r
created and deleted before being written out, so they contribute favorably to the write traffi
atio. Traffic ratios as low as 30% have been observed during large compilations.

4.3. Server I/O Traffic

This section presents the I/O traffic from the standpoint of the file servers. In the case of

m
a file server it is interesting to compare the traffic to its cache to the traffic to its disks. Two

etrics are given, the ‘‘File Traffic’’ and the ‘‘MetaData Traffic.’’ Metadata is data on the
e

fi
disk that describes a file and where it lives on disk. This includes the descriptor that stores th

le’s attributes, and the index blocks used for the file map. The ‘‘File Traffic’’ represents I/O
d

m
to file data blocks as opposed to the metadata information. The combination of file traffic an

etadata traffic gives the total disk traffic for the file server. Three ratios are given that

ii
New Client Write Traffic (Bytes/Seconds and ratios) (Mar-Apr ’91)ii
Hr Cache WriteBack Uncached PageOut Totalii

8 36 96% 34 62% 1 2.6% 15 28% 55
8

1
11 160 50% 79 42% 1 0.8% 65 34% 18
4 174 74% 129 46% 1 0.5% 107 38% 276

7
2
17 350 74% 260 52% 10 2.0% 178 35% 49
0 233 79% 185 58% 1 0.4% 104 32% 318

4i 23 170 85% 145 54% 1 0.5% 95 36% 26iii
i TL 122 62% 75 55% 1 1.4% 45 33% 134iiicc
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c

r
p
Table 14. Hourly write traffic after the shared host load database was replaced with a serve
rocess. The clients are a collection of Sun-4s and DECstations. The rate of I/O to uncach-

s
able files has dropped significantly, but there is still evidence of uncachable files, most likely
ystem log files and the user login database. There are two anomalies in this table. First,

m
there was one spike of uncachable traffic on three clients which shows up under hour 17 that

ay been an artificial test. Second, the percentages only total approximately 90% of the net-
r

p
work traffic. The missing data stems from remote access to devices and user-level serve
rocesses. In particular, one user-level server acts as a gateway to remote NFS servers, and a

number of long-running simulations directed their output to NFS files.

- 11 -

c

Sprite Caching

ompare cache traffic to disk traffic:

File Traf f ic Ratio =
C
Fhh

hhhM
C

T

Metadata Traf f ic Ratio =

otal Traf f ic Ratio =
C

M + Fhhhhhhh

C
i
Where F is the disk traffic from the cache to file data, M is the disk traffic to metadata, and
s the traffic between applications and the cache. There are no uncachable files on a file

s
i
server. The file traffic ratio ignores the effects of metadata, while the total traffic ratio include
t.

The server I/O traffic from a 20-day study period, October 29 through November 19,

a
1989, is given in Tabled 15 and 16. Figure 1 shows the server I/O traffic for a combination of
ll servers averaged over a 6-month study period, from July to December 1989. Servers were

e
f
sampled every hour, 24 hours a day. The graphs indicate that the server caches are effectiv
or reads during peak usage hours. The server caches are less effective for writes because

t
o
client caches trap out most of the short-lived data. The write graph highlights the large amoun
f write traffic to metadata. File descriptors have to be updated with access and modify times,

1
so just reading a file ultimately causes its descriptor to be written to disk. Furthermore, the
28-byte descriptors are written 32 at time in 4K blocks so there is extra traffic from

r
p
unmodified descriptors. The large amount of metadata traffic at 2am is because the UNIX ta
rogram is used for our nightly dumps, and it changes the access time of every directory and

yany files that were dumped. The effect of metadata changes has been noted b

iii
i Server I/O Traffic (Bytes/Second) (Fall ’89)iii

H
Cache Traffic File Traffic MetaData Traffic Total Disk

ost bytes/s (dev) bytes/s (dev) bytes/s (dev) bytes/s iii
Mint r 8601 (9321) 3427 (7876) 283 (982) 3710

6i w 921 (640) 863 (507) 4133 (1913) 499ii
Oregano r 4421 (9129) 3201 (8242) 453 (1101) 3654

w 932 (3163) 804 (2994) 1295 (1295) 2099 iii
Allspice r 11478 (18313) 5970 (16398) 520 (2062) 6490

0i w 5174 (9495) 3838 (6142) 1692 (2013) 553ii
Assault r 1808 (7342) 1481 (7128) 180 (604) 1661

w 529 (3081) 291 (1385) 350 (676) 641 iii
combined r 25946 - 13932 - 1433 - 15515

6i w 7305 - 5620 - 7481 - 1326iic
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

-
v
Table 15. I/O traffic on the file servers over a 20-day period from October 29 through No
ember 19, 1989. The upper row for each server gives read I/O rates, the lower row gives

f
write rates. The average and standard deviation are given for the bytes/sec transferred to and
rom the cache (‘‘Cache’’), file data blocks on disk (‘‘File’’), from file descriptors and index

blocks on disk (‘‘MetaData’’), and the total traffic to the disk (‘‘Total’’).

- 12 -

Sprite Caching

iii
i Server I/O Traffic (Megabytes and Ratios)iii
i Host Cache File MetaData Total Diskii

Mint r 15172 6046 40% 500 3% 6546 43%
w 1624 1523 94% 7291 449% 8814 542%iii

Allspice r 18861 9811 52% 854 5% 10665 57%
%i w 8503 6307 74% 2781 33% 9088 107ii

Oregano r 8199 5937 72% 839 10% 6776 83%
w 1729 1491 86% 2402 139% 3893 225%iii

Assault r 3131 2565 82% 311 10% 2876 92%
%i w 917 505 55% 606 66% 1111 121ii

combined r 45364 24358 54% 2505 6% 26863 59%
w 12772 9826 77% 13080 102% 22906 179%i

c
c
c
c
c
c
c
c
c
c
c
c
cciicc

c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c

e
p
Table 16. This gives the total megabytes transferred for the results given in Table 14, and th
ercentage that this is of the megabytes transferred to or from the cache. The total disk traffic

H

can be greater than 100% of the cache traffic because of metadata traffic.

agmann[Hagmann87], who converted the Cedar file system to log metadata changes, which
-

s
reduced metadata traffic considerably. Current research in the Sprite group involves a log
tructured file system where all data, file and metadata, is logged [Ousterhout89] [Rosen-

blum91].

The tables show that the cache on Mint, the root server, is effective in eliminating reads

t
(40% file traffic in the 20-day study), but not as good at eliminating writes (94% traffic ratio in
he 20-day study). Its read hits occur on frequently-used program images and the load average

-
t
database. The steady updates to this file and other logs trigger a steady update of disk descrip
ors, which explains Mint’s high metadata traffic.

Preliminary server traffic data showed that Mint had a traffic ratio of only 50%, while the

a
other servers had write traffic ratios of 70% to 80% or more. Mint’s low traffic ratio prompted

search for a bug in the cache write-back code, and indeed it turned out that continuously
s

w
updated files were never being written out to disk! The 20-day study reported in the table

as made after this bug was fixed. Mint’s traffic ratio changed from 50% to 94%, which indi-

d
cates that almost half the data written to it is to continuously updated files, i.e. the host load
atabase. The 6 month study graphed in Figure 1, however, includes both versions of the sys-

d
tem so there actually should have been slightly more file write traffic to update the host load
atabase.

Allspice and Oregano are directly comparable because they store the same type of files
s

c
(many files were shifted from Oregano to Allspice during the 20-day study period). Allspice’
ache is about 10 times the size of Oregano’s and it is clearly more effective. This is to be

e
fi
expected because the server’s cache is a second-level cache, with the clients’ caches being th

rst level. The server’s caches have to be much larger than the client’s caches because the
locality of references to their cache is not as good.

It is also interesting to see how the caches skew the disk traffic towards writes. During
o

t
the 20-day study period, the traffic to the server caches was about 22% writes. The traffic t
he server disks was 26% metadata writes and 20% data writes. If the metadata traffic is

discounted as an artifact, then the data writes accounted for 40% of the disk traffic. The skew

- 13 -

h

Sprite Caching

hhh

Write Traffic

d

n

o

c

e

S

/

s

e

t

y

B

Hour of Day

40000

35000

30000

25000

20000

15000

10000

5000

0
24201612840

metaDataBytes

fileBytes remoteBytes

cacheBytes

0 4 8 12 16 20 24
0

5000

10000

15000

20000

25000

30000

35000

40000

Hour of Day

B

y

t

e

s

/

S

e

c

o

n

d

Read Traffic

hh

Figure 1. Server I/O traffic averaged from July 8 to December 22, 1989. The left-hand graph
s

t
has read traffic and the write-hand graph has write traffic. ‘‘cacheBytes’’ are file data byte
ransferred between the cache and remote clients or server-resident applications. ‘‘fileBytes’’

b
are file data bytes transferred between the disk and the cache. ‘‘remoteBytes’’ are file data
ytes accessed remotely by server-resident applications. ‘‘metaDataBytes’’ are metadata bytes

-
D
transferred to and from the disk. The total disk traffic is the sum of ‘‘fileBytes’’ and ‘‘meta

ataBytes’’.

towards writes at the disk level should continue as server caches get larger and more effective

5

at trapping reads.

. Variable-Sized Caches

An important feature of Sprite caches is that they vary in size in order to make use of all

fi
available memory. Nelson[Nelson88a] explored ways of trading memory between the Sprite

le system and the virtual memory system, which needs memory to run user programs. The
-

e
basic approach Nelson developed was to compare LRU times (estimated ages) between the old
st page in the FS cache and the oldest VM page and pick the oldest one for replacement.

m
Thus the file system cache size will grow or shrink depending on file system and virtual

emory activity.

Nelson found that it was better to bias in favor of the VM system in order to reduce the
a

b
page fault rate and provide a good interactive environment. The bias is achieved by adding
ias to the LRU time of the VM system so that its pages appear to be referenced more recently

.
A
than they really were. We have arbitrarily chosen a bias against the file system of 20 minutes

ny VM page referenced within the last 20 minutes will never be replaced by a FS cache
page. This policy is applied uniformly on all hosts, and it adapts naturally to both clients and

- 14 -

s

Sprite Caching

ervers. Servers use most of their memory for a file cache, while active clients use most of

i
their memory to run user programs. Idle clients become hosts for process migration, and large
dle programs (i.e. the window system) tend to get paged out and replaced by more file cache

5

as well as the migrating applications.

.1. Measured Cache Sizes

Table 17 gives the average and maximum cache sizes as measured over the 6-month
.

T
study made in 1989. Table 18 gives the same measurements taken during the second study

he file servers are listed individually, and the clients are grouped according to the amount of

c
physical memory they have. The adaptive nature of the cache sizes is evident when comparing
lients and servers with the same memory size; the file servers devote more of their memory to

t
m
the file cache. This difference is not achieved via any special cases in the implementation, bu

erely by the uniform application of the 20-minute bias against the file system described
above.

The cache occupies a larger percentage of main memory as the memory size increases,

t
indicating that the extra memory is being utilized more by the file cache than by the VM sys-
em. Consider the Sun3 clients in the first study. Doubling the physical memory on a Sun3

e
p
client quadruples the average cache size on the client; it increases from 17% to 34% of th
hysical memory. In the second study the average cache size as a percentage of memory size

increases with memory size.

iii
i Cache Size (Megabytes) (Fall ’89)iii
iHost Mem Average Std Dev Maximumii

A
Allspice* 128 67.8 52% 22.14 17% 78.13 61%

ssault** 24 7.5 31% 4.55 19% 16.50 69%
%

O
Mint 16 9.0 56% 1.23 8% 11.80 74

regano 16 8.6 54% 1.77 11% 12.06 75%iii
Sun3 8 1.4 17% 0.96 12% 4.42 55%

%
S
Sun3 12 3.2 27% 1.76 15% 7.88 66

un3 16 5.5 34% 2.86 18% 12.22 76%iii
Sun4 12 2.1 17% 1.73 14% 6.87 57%

%iSun4 24 6.0 25% 3.70 15% 13.43 56ii
iDS3100 24 6.3 26% 2.27 9% 10.36 43%iicc
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c

r
t
Table 17. Cache sizes as a function of main memory size and processor type, averaged ove
he 6-month 1989 study period. The average, standard deviation, and maximum values of the

s
observed cache sizes are given. The sizes are megabytes and percentage of main memory
ize. The file servers are listed individually. The rest of the clients are averaged together

*
based on CPU type and memory size.

Allspice’s cache was limited to at most 78.13 Mbytes.
.** Assault’s cache was limited to 8.7 Meg during most of the study

- 15 -

Sprite Caching

iii
i Cache Size (Megabytes) (March-April ’91)iii
iHost Mem Average Std Dev Maximumii

A
Allspice 128 93.8 73% 15.1 12% 106.4 83%

nise 32 17.9 56% 2.5 8% 22.2 70%
%iAssault 24 9.5 40% 2.3 10% 14.0 58ii

Clients 8 0.5 7% 0.4 5% 1.6 20%
16 1.7 11% 1.5 10% 7.7 48%

%
2
24 4.8 20% 3.0 12% 12.7 53

8 6.8 24% 3.6 13% 16.3 58%
%i 32 10.5 33% 3.7 12% 15.2 48iicc

c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c

r
t
Table 18. Cache sizes as a function of main memory size and processor type, averaged ove
he March-April ’91 study period. The average, standard deviation, and maximum values of

s
the observed cache sizes are given. The sizes are megabytes and percentage of main memory
ize. The file servers are listed individually. The rest of the clients are averaged together

based on memory size. There were no limits on cache sizes during this study.

The variability of the client caches is indicated by the standard deviation and the max-

t
imum observed values. The variability tends to increase as the memory gets larger, indicating
hat the cache is trading more memory with the VM system. The DECstations have lower

-
t
variability in the initial study because their cache was limited to about 8.7 Meg. This limita
ion was a software limit that was removed before the second study was made, and the varia-

bility was slightly higher during the second study period.

The results from the servers show that Mint and Oregano could only devote on average a
s

3
little over half their memory to their file cache, yet their maximum cache size was as much a
/4 of their memory. Similarly, during the second study, Allspice’s cache averaged 73% of its

a
memory, while its maximum was 83%.† The server caches ramp up to a maximum shortly
fter booting, and then gradually decline in size as the kernel builds up state information about

s
how its files are being used. There are no fixed sized tables in the implementation, and the file
ystem data structures have not been tuned to reduce their space. The servers also grow the

-
a
number of RPC server threads they keep, and each thread has a significant amount of pre
llocated buffer space as well as a kernel stack. Thus the file servers need large memories,

o
both to increase their cache sizes and to accommodate the data structures they maintain in
rder to manage their cache and those of their clients.

6. Related Work

The Sprite caching system was initially studied by Nelson for his thesis work
t

h
[Nelson88a]. He compared 9 different client writing policies in combination with 4 differen
hhhhhhhhhhhhhhhhhhhhhhhhhhhh

† During the initial study Allspice’s cache size was limited due to a poor interaction with the
e

c
memory mapping hardware on the Sun4. The file cache used up hardware page map entries, and if th
ache got too large it would cause extreme contention for the few remaining hardware map entries.

h
The problem was fixed by the time the second study was made by allowing the MMU manager to steal
ardware map entries associated with cache blocks.

- 16 -

s

Sprite Caching

erver writing policies on a set of benchmarks. He found that using a delay policy on both
-

t
clients and servers minimized I/O traffic and provided the best client response time. In con
rast, a "write through on close" policy, which is used in NFS, increases network and disk

traffic and causes clients to wait at close time.

AFS uses a hybrid strategy of caching temporary files (those under "/tmp") with a delay
e

S
policy, but writing through other files at close. Nelson found this to be almost as good as th

prite policy in terms of network bandwidth reduction, although significant delays can still

t
occur when non-temporary data is written through to the server. AFS caches remote files on
he local disk, in contrast to Sprite’s use of main memory. Howard found a read miss rate of

t
about 20% on the AFS client caches [Howard88], which is better than the miss rates found in
his study. The better miss rate in AFS is because the disk-based caches of AFS are larger

r
than the main memory caches in Sprite (AFS clients usually have 20 or 40 Meg caches). The
esponse time and server CPU utilization of NFS, AFS, and Sprite were compared in

r
t
[Nelson88b]. Sprite provided the best response time (25% faster than AFS and 35% faste
han NFS), while AFS had better (i.e. lower) server utilization (16% server CPU utilization

n
S
under load for AFS vs. 38% for Sprite and 80% for NFS). Another comparison betwee

prite and NFS can be found in [Srinivasan89], in which the addition of the Sprite delayed-
write policy and consistency mechanism to an NFS system improved performance significantly.

Earlier studies of I/O traffic include Ousterhout’s measurements of timesharing VAXes

w
running 4.2 BSD UNIX [Ousterhout85], which reported per-user I/O rates of 300-600 bytes/sec

hen averaged over 10 minute intervals, and rates of 1400 to 1800 bytes/sec when averaged
e

u
over 10 second intervals. These rates do not include paging traffic, and they are for activ
sers only. Rates are higher over shorter intervals because there are fewer active users in a

a
shorter interval. The rates obtained for Sprite clients, about 1500 bytes/sec for combined read
nd write traffic in the mid-afternoon, are averaged over 180 minutes and include periods of

i
inactivity. Ousterhout and his students have recently taken trace data from the Sprite network
n order to make similar measurements as those of his original study, and these results should

be published this year [Baker91].

Kent also took trace data from a timesharing UNIX system and used the data to drive a

k
simulation of a network file cache [Kent87]. Kent found per-user I/O rates of about 2
bytes/sec, which is slightly higher than the rates found by Ousterhout et al because Kent’s

measurements included paging requests.

Floyd studied file and directory access patterns in the UNIX environment [Floyd86]. His

d
focus was not on I/O rates, but on the rate that files were opened, file lifetimes, and the
ifference in use of different classes of files. Floyd found, for example, that most temporary

y
fi
files live less than one minute. The faster workstations used today should consume temporar

les at a faster rate, suggesting that the 30 second delay period used in Sprite is appropriate.

-
u

One common difference between the trace driven studies described above and the meas
rements presented here is that the trace driven studies predicted lower cache miss ratios. Kent

s
simulated combined read-write miss ratios that varied from 32% down to 11% as the cache
ize increased from 256 kbytes to 8 mbytes (see Table 5-1 in [Kent87]). Ousterhout’s simula-

i
tions showed a combined read-write miss ratio that varied from 49% to 25% as the cache size
ncreased from 390 kbytes to 16 mbytes. The combined miss ratios measured here are about

d
40%. Part of the difference is probably due to the variable sized caches, and part is probably
ue to changing workloads. The bias against the file system in the variable sized cache

emechanism means that cache miss rates may increase while page fault rates are reduced. Th

- 17 -

fi

Sprite Caching

le system cache may not perform as well, but the system feels faster to to user. There is also
-

t
a difference in workload between a timeshared VAX 11-780 and a network of personal works
ations that are each 10 times as fast as a VAX. Window systems invite users to do more

s
s
things at once, and the guaranteed CPU power of a personal workstation encourages large job
uch a system recompilation. As a result, the workload applied to the file system has scaled up

7

considerably.

. Conclusion

This paper has reviewed the Sprite caching system and reported on its performance when
s

h
supporting day-to-day work in our user community. Measurements from two study period
ave been presented. The first study was made in the fall of 1989, shortly after Sprite was

m
made available to users outside the development team, while the second study was made 16

onths later. There are a number of significant results. Client write traffic ratios averaged
s

w
52% and 62% in the two studies, meaning that almost half the data generated by application

as never written through to the server because it was deleted or overwritten before the 30-
,

i
second aging period expired. Client read miss rates were 35% and 39% in the two studies
ndicating reasonable effectiveness. There was low overhead from consistency-related actions.

m
In less than 1% of open operations did the server have to issue cache control messages. The

ost interesting negative result is that the shared database used to record host load averages

r
accounted for approximately 10% of the network write traffic and up to 60% of the network
ead traffic for some clients. This problem has been cured by replacing this heavily shared file

e
s
with a network server process and tuning the interface to it. The result is that concurrent writ
haring, which causes files to be uncacheable on clients, occurs in less than 1% of the files

t
opened. There is very little consistency-related traffic between the servers and clients, and
here is very little data traffic to uncachable data.

Acknowledgements

I would like to thank Prof. Ousterhout and the other members of the Sprite team, Mary
d

c
Baker, Fred Douglis, John Hartmann, Mendel Rosenblum, and Ken Shirriff, for their help an
ooperation as I continued this study after my graduation. I would also like to thank Gene

t
Spafford for this opportunity to publish this paper outside the initial workshop it was originally
argeted for, and to thank all the outside reviewers for their feedback on initial versions of the

R

paper.

eferences

Baker91. M. Baker, J. Hartman, M. Kupfer, K. Shirriff and J. Ousterhout,
,

F
‘‘Measurements of a Distributed File System’’, Submitted for publication

eb. 1991.

Douglis90. F. Douglis, ‘‘Transparent Process Migration for Personal Workstations’’,

F

PhD Thesis, Sep. 1990. University of California, Berkeley.

loyd86. R. Floyd, ‘‘Short-Term File Reference Patterns in a UNIX Environment’’,
Technical Report Tech. Rep. 177, University of Rochester, Mar. 1986.

- 18 -

H

Sprite Caching

agmann87. R. Hagmann, ‘‘Reimplementing the Cedar File System Using Logging and
.

1
Group Commit’’, Proc. of the 11th Symp. on Operating System Prin., Nov

987, 155-162.

Howard88. J. H. Howard, M. L. Kazar, S. G. Menees, D. A. Nichols, M.

i
Satyanarayanan, R. N. Sidebotham and M. J. West, ‘‘Scale and Performance
n a Distributed File System’’, Trans. Computer Systems 6, 1 (Feb. 1988),

K

51-81.

ent87. C. Kent, ‘‘Cache Coherence in Distributed Systems’’, PhD Thesis, Dec.

N

1987. Purdue University.

elson88a. M. N. Nelson, ‘‘Physical Memory Management in a Network Operating

N

System’’, PhD Thesis, Nov. 1988. University of California, Berkeley.

elson88b. M. Nelson, B. Welch and J. Ousterhout, ‘‘Caching in the Sprite Network

O

File System’’, Trans. Computer Systems 6, 1 (Feb. 1988), 134-154.

usterhout85. J. Ousterhout, H. D. Costa, D. Harrison, J. Kunze, M. Kupfer and J.
,

P
Thompson, ‘‘A Trace-Driven Analysis of the UNIX 4.2 BSD File System’’

roc. 10th Symp. on Operating System Prin., Operating Systems Review 19,

O

5 (December 1985), 15-24.

usterhout88. J. Ousterhout, A. Cherenson, F. Douglis, M. Nelson and B. Welch, ‘‘The
-

3
Sprite Network Operating System’’, IEEE Computer 21, 2 (Feb. 1988), 23

6.

Ousterhout89. J. Ousterhout and F. Douglis, ‘‘Beating the I/O bottleneck: A Case for
,

1
Log-Structured File Systems’’, Operating Systems Review 23, 1 (Jan. 1989)
1-28.

Rosenblum91. M. Rosenblum and J. Ousterhout, ‘‘The Design and Implementation of a

S

Log-Structured File System’’, Submitted for publication, Feb. 1991.

rinivasan89. V. Srinivasan and J. Mogul, ‘‘Spritely NFS: Experiments with Cache-
,

O
Consistency Protocols’’, Proc. 12th Symp. on Operating System Prin.

perating Systems Review 23, 5 (December 1989), 45-57.

.Thompson87. J. Thompson, ‘‘Efficient Analysis of Caching Systems’’, PhD Thesis, 1987
University of California, Berkeley.

mWelch86. B. B. Welch and J. K. Ousterhout, ‘‘Prefix Tables: A Simple Mechanis
for Locating Files in a Distributed Filesystem’’, Proc. of the 6th ICDCS,

W

May 1986, 184-189.

elch88. B. B. Welch and J. K. Ousterhout, ‘‘Pseudo-Devices: User-Level Extensions

1
to the Sprite File System’’, Proc. of the 1988 Summer USENIX Conf., June

988, 184-189.

Welch89. B. Welch, M. Baker, F. Douglis, J. Hartmann, M. Rosenblum and J.

R
Ousterhout, ‘‘Sprite Position Statement: Use Distributed State for Failure

ecovery’’, Proc. of the Second Workshop on Workstation Operating

W

Systems (WWOS-II), Sep. 1989, 130-133.

elch90. B. B. Welch, ‘‘Naming, State Management, and User-Level Extensions in
f

C
the Sprite Distributed File System’’, PhD Thesis, 1990. University o

alifornia, Berkeley.

- 19 -

